PHP 7.4
Nouveauteés

Julien Vinber - Meetup AFUP Montpellier
28 janvier 2020 - Crealead



Ue=2ay |
R
agllh.?amii».
SERIE=AR®
,"’l'l’-;——.ll!‘\“
—_—

Julien Vinber

Slack Mth : @julienvinber
LinkedIn : @julienvinber

Lead Dev chez Qape

Dev PHP/Symfony

Dev depuis plus de 15 ans
Coordinateur AFUP Montpellier


https://www.linkedin.com/in/julienvinber/

Rappel



Currently Supported Versions

Branch Initial Release Active Support Until Security Support Until
30 Nov 2017 2 years, 1 month ago 30 Nov 2019 1 month ago 30 Nov 2020  in 10 months
6 Dec2018  1year, Tmonthago 6 Dec2020  in 10 months 6 Dec 2021 in 1year, 10 months
28 Nov 2019 1 month ago 28 Nov 2021 in 1year, 10 months 28 Nov 2022  in 2 years, 10 months

Or, visualised as a calendar:

1Jan 2017 1)an 2018 1)an 2019 1Jan 2020 1Jan 2021 1Jan 2022 1Jan 2023 1)an 2024

5.6

Today: 27 Jan 2020

A release that is being actively supported. Reported bugs and security issues are fixed and regular point releases are made.

3
<

A release that is supported for critical security issues only. Releases are only made on an as-needed basis.

End of life A release that is no longer supported. Users of this release should upgrade as soon as possible, as they may be exposed to unpatched security vulnerabilities.



Modification structurelle.



Typed properties

<?php <?php
class Utilisateur73 class Utilisateur74
{ {
/** public int $id;
* @var int public string Snom;
*/ public ?string $prenom;
public $id; }
/**
* @var string
*/
public Snom;
/**
* @var string|[null
&7

public Sprenom;

https://wiki.php.net/rfc/typed properties v2



https://wiki.php.net/rfc/typed_properties_v2

Type de retour covariant

interface CollectionInterface class Item
{ {
public function premier(): ItemInterface; public string Snom;
} }
class CollectionUtilisateur implements CollectionInterface class Utilisateur extends Item
{ {}
public function premier(): Utilisateur
{ 1}
}

https://wiki.php.net/rfc/covariant-returns-and-contravariant-parameters



https://wiki.php.net/rfc/covariant-returns-and-contravariant-parameters

Type de parametre contravariant

interface CollectionInterface class Item
{ {
public function ajouter(Item $Sitem): void; public string Snom;
} }
class CollectionUtilisateur implements CollectionInterface class Utilisateur extends Item

{ {}

https://wiki.php.net/rfc/covariant-returns-and-contravariant-parameters



https://wiki.php.net/rfc/covariant-returns-and-contravariant-parameters

class CollectionParent class Item
{ {
public function ajouter(Utilisateur Sutilisateur):void public string Snom;
{print(Sutilisateur);} }
}
class Utilisateur extends Item
class CollectionEnfant extends CollectionParent {}
{

public function ajouter(Item Sutilisateur):void
{print(Sutilisateur);}



Nouvelle solution pour sérialiser un objet

https://wiki.php.net/rfc/custom object serialization



https://wiki.php.net/rfc/custom_object_serialization

Serializable __sleep / _wakeup
class A implements Serializable { class A implements Serializable {
private $prop; private $ttc;
public function serialize() { private Sht;
return serialize(S$this->prop); public function __sleep() {
} return [ ‘ht’];
public function unserialize(Spayload) { }
Sthis->prop = unserialize($payload); public function __wakeup() {
} Sthis->ttc = $ht * 1.2;
} }
class B extends A { }

private Sprop;
public function serialize() {
return serialize([$this->prop, parent::serialize()])
}
public function unserialize(Spayload) {
[Sprop, S$parent] = unserialize(Spayload);
parent: :unserialize(Sparent);
$this->prop = Sprop;



Nouvelle solution :

class A {
private $prop_a;
public function __serialize(): array {
return ["prop_a" => Sthis->prop_a];
}
public function __unserialize(array Sdata) {
Sthis->prop_a = Sdata["prop_a"];
}
}

class B extends A {
private $prop_b;

public function __serialize(): array {

return [
"prop_b" => Sthis->prop_b,
"parent_data" => parent::__serialize(),
|5
}
public function __unserialize(array Sdata) {
parent::__unserialize(Sdata["parent_data"]);
Sthis->prop_b = S$data["prop_b"];
}



Weak References

Sobject = new stdClass;
SweakRef = WeakReference::create(Sobject);

var_dump (SweakRef->get()); //object(stdClass)#1 (8) {}

unset(Sobject);
var_dump (SweakRef->get()); //null

https://wiki.php.net/rfc/weakrefs



https://wiki.php.net/rfc/weakrefs

Les performances



Preloading

La version simple

lecture

index.php index.php

compilation
index.php

execution
index.php

lecture
lib1.php

compilation
lib1.php

execution
lib1.php

https://wiki.php.net/rfc/preload



https://wiki.php.net/rfc/preload

Preloading

Avec OPCache

index.php

lecture
index.php

compilation
index.php

execution
index.php

lecture
lib1.php

compilation
lib1.php

execution
lib1.php




Preloading

Avec OPCache : premier fois

index.php

lecture compilation execution lecture compilation execution

index.php index.php index.php lib1.php lib1.php lib1.php
OPCACHE OPCACHE
index.php lib1.php




Preloading

Avec OPCache : ensuite

index.php execution execution
] index.php lib1.php
OPCACHE OPCACHE

index.php lib1.php




Preloading

C’est mieux, mais il reste la premiére fois.



Preloading

Nouveau avec PHP 7.4 le preloading :

; php.ini
opcache.preload=/path/monfichier.php



Preloading

Exemple avec SF5/SF4.4

; php.ini
opcache.preload=/path/to/project/var/cache/prod/App_KernelPro
dContainer.preload.php



|
/**
* Get files that specified suffix
* @param Spath
* @param array $files
* @return array
&
function getfiles( Spath , &Sfiles = array() ) {
if ( 'is_dir( Spath ) ) return null;
Shandle = opendir( S$path );
while ( false !== ( S$file = readdir( Shandle ) ) ) {
if ( $file !'= '.' && S$file != '..' ) {
Spath2 = $path . '/' . S$file;
if ( is_dir( S$path2 ) ) {
getfiles( Spath2 , S$files );
} else {
if ( preg_match( "/\.(php|php5)$/i" , $file ) ) {
Sfiles[] = Spath2;

}
}
}
return $files;
}
$files = getfiles('/png/www/example.com/public_html/app/wordpress');
Sbr = (php_sapi_name() == "c¢li") ? "\n" : "<br />";

foreach($files as $file){
opcache_compile_file($file);
echo $file.S$br;



Preloading

ATTENTION : aréserver pour la prod

MAJ => recharger PHP



En chiffres

100
75
2
50
]
o
1
25
0

No preloading Naive preloading Optimised preloading

https://stitcher.io/blog/php-preload-benchmarks


https://stitcher.io/blog/php-preload-benchmarks

Un peu de sucre...



Existe depuisla 5.6

Permet de “packager” des arguments

function test(S$Sarg1l, S$arg2, Sarg3 = null) {
var_dump(Sarg1, Sarg2, Sarg3);

}
test(...[1, 2]); // 1, 2
test(...[1, 2, 31); // 1, 2, 3

test(...[1, 2, 3, 4]); // 1, 2, 3 (remaining arg is not captured by the function declaration)

https://wiki.php.net/rfc/spread operator for array



https://wiki.php.net/rfc/spread_operator_for_array

EnPHP 7.4

Etendu sur les Array
Sparts = ['apple', 'pear'];
$fruits = ['banana', 'orange', ...$parts, 'watermelon'];

var_dump($fruits);



La source peut étre un tableau, un Traversable ou générateur.

function generator() {
for (Si = 3; 8i <= 5; Si++) {
yield $i;

Sarr1 = [0, 1, 2, ...generator()];



Fonctions anonymes courts

Les fonctions anonymes sont arrivées en 5.3

function array_values_from_keys(8arr, Skeys) {
return array_map(function ($x) use (Sarr) { return Sarr[$x]; }, Skeys);

}

En7.4

function array_values_from_keys(S8arr, Skeys) {
return array_map(fn($x) => Sarr[$x], Skeys);
}

https://wiki.php.net/rfc/arrow functions v2



https://wiki.php.net/rfc/arrow_functions_v2

Assignation Coalesce Null

Depuis 7.0

Susername = $_GET['user'] ?? 'nobody';

En7.4

Svaleur ??= 'nada';

https://wiki.php.net/rfc/null coalesce equal operator



https://wiki.php.net/rfc/null_coalesce_equal_operator

Séparateur neutre pour les nombres.

Snombre = 1000000000 ;

Snombre = 1_0600_000_000;

» )

Attention : 3 utiliser uniquement entre 2 chiffres “100_" n’est pas autorisé.

https://wiki.php.net/rfc/numeric literal separator



https://wiki.php.net/rfc/numeric_literal_separator

FFI



FFI - Foreign Function Interface

Permet de s’interfacer directement en PHP a des bibliotheques externes (.so, .dll)

Sans extension PHP a écrite dans un Autre langage et a installer spécifiquement sur le serveur.

https://wiki.php.net/rfc/ffi



https://wiki.php.net/rfc/ffi

Comment cela marche?

On prend une librairie existante ou nous créons notre propre librairie.
On récupere ou on crée le fichiers .h de cette librairie

On charge lalibrairie.

On peut l'utiliser.



Un exemple vete emprunte chez jolicode

Utilisation de la librairie libuuid

https://jolicode.com/blog/php-7-4-et-ffi-ce-quil-faut-retenir



https://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git/tree/lib/uuid
https://jolicode.com/blog/php-7-4-et-ffi-ce-quil-faut-retenir

Le fichier .h origine.

void uuid_generate(uuid_t out);

int uuid_compare(const uuid_t uul, const uuid_t uu2);
it e




Le fichier .h netoyer

define
typedef unsigned char uuid_t[16];

extern void uuid_generate_time(uuid t out);

extern void uuid_generate md5(uuid_t out, const uuid_t ns, const char *name, size_t len);

extern void uuid _generate_random(uuid_t out);

extern void uuid_generate shal(uuid_t out, const uuid_t ns, const char *name, size t len);



Utilisation en PHP

<?php

$ffi = FFI::load(__DIR__ . '/include/uuid-php.h');
Soutput = $ffi->new('uuid_t');
$ffi->uuid_generate_random(Soutput);

Suuid = sprintf('%02x%02x%02x%02x-%02x%02X-%02x%02X-%02x%02x -%02x%02x%02x%02x%02x%02x ", ...Soutput);



PHP 8



Union types

class Number

{

private int|float $number;

public function setNumber(int|float Snumber): void {
Sthis->number = Snumber;

}

public
function getNumber(): int|float {
return $this->number;

https://wiki.php.net/rfc/union types v2



https://wiki.php.net/rfc/union_types_v2

Fonctionnement d’'un compilateur comme PHP

CompilationPHP VMdexécution
index.php ~ Bytcode o gce)l(cj;ﬁine

https://wiki.php.net/rfc/jit



https://wiki.php.net/rfc/jit

Avec JIT

Opcache VMdexécution
index.php ~ Bytcode g %;iﬁine

Code
machine




Priorité de concaténation

echo "sum: " . Sa + $b;

277

https://wiki.php.net/rfc/concatenation precedence



https://wiki.php.net/rfc/concatenation_precedence

Priorité de concaténation

echo "sum: " . Sa + $b;

echo Sa + b . " €";

Aujourd’hui :

“n»

o “et“+” auméme niveau
e évaluation de gauche a droite)



Priorité de concaténation

echo "sum: " . $a + $b; echo Sa + $b . " €";
=> Aujourd’hui => Aujourd’hui
echo ("sum: " . $a) + $b; echo ($a + $b) . " €";
=> =>

Warning OK



Priorité de concaténation

echo "sum: " . Sa + $b;

echo Sa + b . " €";

PHP 8.0:

“n»

e “+”3unepriorité supérieur a“



Priorité de concaténation

echo "sum: " . $a + $b; echo Sa + $b . " €";
=> Aujourd’hui => Aujourd’hui
echo "sum: " . ($a + $b); echo ($a + $b) . " €";
=> =>

OK OK



Quelques liens R

https://wiki.php.net/rfc#php 74

Changelog:
https://www.php.net/manual/fr/doc.changelog.php
Github:

https://github.com/php/php-src/blob/PHP-7.4/UPG
RADING



https://wiki.php.net/rfc#php_74
https://www.php.net/manual/fr/doc.changelog.php
https://github.com/php/php-src/blob/PHP-7.4/UPGRADING
https://github.com/php/php-src/blob/PHP-7.4/UPGRADING

Merci

Des questions ?



